Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Svartvitt foto på Annika Fredén. Foto.

Annika Fredén

Docent

Svartvitt foto på Annika Fredén. Foto.

Word embeddings on ideology and issues from Swedish parliamentarians’ motions : a comparative approach

Författare

  • Annika Fredén
  • Moa Johansson
  • Denitsa Saynova

Summary, in Swedish

Quantitative analysis of large-scale political text data in the form of word embeddings has great potential for systematising differences between political parties. We examine the differences between embeddings obtained from speakers from the two competitors for the PM position in Sweden (Social Democrats and Moderates) over a 30-year period. The goal is to compare how off-the-shelf general pre-trained models perform relative to pre-training on a smaller dataset from the same domain. In the analysis, we focus on two types of concepts: issues and ideological terms. We find that generally, the off-the-shelf pre-trained models lead to more reliable results and greater emphasis on ideological differences between the studied parties.

Avdelning/ar

  • LU profilområde: Naturlig och artificiell kognition
  • Statsvetenskapliga institutionen

Publiceringsår

2024-12-04

Språk

Engelska

Publikation/Tidskrift/Serie

Journal of Elections, Public Opinion and Parties

Dokumenttyp

Artikel i tidskrift

Förlag

Routledge

Ämne

  • Political Science
  • Computer and Information Sciences

Nyckelord

  • machine learning
  • Parliaments
  • text as data
  • word embeddings
  • word embeddings
  • parties
  • ideology

Aktiv

Inpress

Projekt

  • Bias and methods of AI technology studying political behavior

ISBN/ISSN/Övrigt

  • ISSN: 1745-7289